Influence of connector groups on the interactions of substituents with carbon-centered radicals.

نویسندگان

  • Ambili S Menon
  • Thomas Bally
  • Leo Radom
چکیده

High-level G3X(MP2)-RAD calculations have been carried out to examine the effect of interposing a "connector" group (W) on the interaction between a substituent (X) and the radical center in carbon-centered radicals ((•)CH(2)-W-X). The connector groups include -CH(2)-, -CH═CH-, -C≡C-, -p-C(6)H(4)-, -m-C(6)H(4)-, and -o-C(6)H(4)-, and the substituents include H, CF(3), CH(3), CH═O, NH(2), and CH═CH(2). Analysis of the results is facilitated by introducing two new quantities termed radical connector energies and molecule connector energies. We find that the -CH(2)- connector effectively turns off π-electron effects but allows the transmission of σ-electron effects, albeit at a reduced level. The effect of a substituent X attached to the -CH═CH- and -C≡C- connector groups is to represent a perturbation of the effect of the connector groups themselves (i.e., CH═CH(2) and C≡CH).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of substituents on the stabilities of multiply-substituted carbon-centered radicals.

The bond dissociation energies (BDEs) and radical stabilization energies (RSEs) which result from 166 reactions that lead to carbon-centered radicals of the type ˙CH(2)X, ˙CHXY and ˙CXYZ, where X, Y and Z are any of the fourteen substituents H, F, Cl, NH(2), OH, SH, CH[double bond, length as m-dash]CH(2), C[triple bond, length as m-dash]CH, BH(2), CHO, COOH, CN, CH(3), and CF(3), were calculate...

متن کامل

Theoretical study of the effects of substituent and quadrupole moment on π-π stacking interactions with coronene

Stability of the π-π stacking interactions in the Ben||substituted-coronene and HFBen||substituted-coronene complexes was studied using the computational quantum chemistry methods (where Ben and HFBen are benzene and hexaflourobenzene, || denotes π-π stacking interaction, substituted-coronene is coronene molecule which substituted with four X groups, and X= NH2, CH3, OH, H, F, CF3, CN and NO). ...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

Theoretical study of - stacking interactions in substituted-coronene||cyclooctatetraene complexes: A system without direct electrostatic effects of substituents

Stability of the ;-; stacking interactions in the substituted-coronene||cyclooctatetraene complexes wasstudied using the computational quantum chemistry methods (where || denotes ;–; stackinginteraction, and substituted-coronene is coronene which substituted with four similar X groups; X =OH, SH, H, F, CN, and NO). There are meaningful correlations between changes of geometricalparameters and t...

متن کامل

Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties

In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 116 41  شماره 

صفحات  -

تاریخ انتشار 2012